ΕΝΑ ΤΑΞΙΔΙ ΣΤΙΣ ΤΕΛΕΥΤΑΙΕΣ ΕΠΙΣΤΗΜΟΝΙΚΕΣ ΕΞΕΛΙΞΕΙΣ ΚΑΙ ΣΤΙΣ ΕΦΑΡΜΟΓΕΣ ΤΟΥΣ

¨...Η θέση και η ταχύτητα ενός μικροσκοπικού σωματιδίου δεν μπορεί να είναι ταυτόχρονα γνωστές με απόλυτη ακρίβεια....Όμως το πραγματικό περιεχόμενο της αρχής της αβεβαιότητας αναδεικνύεται αν την εφαρμόσουμε σε ένα σωματίδιο παγιδευμένο σε μια μικροσκοπική περιοχή, οπότε η θέση του είναι γνωστή με περιθώριο λάθους, δηλαδή απροσδιοριστία, όση και η διάσταση της φυλακής του. Εφόσον η απροσδιοριστία στη θέση του θα είναι πολύ μικρή, η απροσδιοριστία στην ταχύτητά του θα είναι πολύ μεγάλη, οπότε και η ταχύτητά του η ίδια θα είναι μεγάλη κατά μέσο όρο. Οδηγούμαστε έτσι στο εξής εντυπωσιακό- και πολύ βαθύ - συμπέρασμα: όσο πιο μικροσκοπική είναι η φυλακή στην οποία είναι κλεισμένο ένα σωματίδιο, τόσο μεγαλύτερη είναι η ταχύτητά του κατά μέσο όρο, άρα τόσο μεγαλύτερη και η κινητική ενέργεια που υποχρεούται να έχει... Η πιο μικροσκοπική φυλακή που υπάρχει στη φύση είναι ο ατομικός πυρήνας. Τι περιμένουμε λοιπόν να κάνουν οι έγκλειστοί του, δηλαδή τα πρωτόνια και τα νετρόνια που βρίσκονται στο εσωτερικό του; Σύμφωνα με τα παραπάνω, θα έχουν τεράστιες κινητικές ενέργειες ακριβώς επειδή είναι παγιδευμένα σε μια τόσο μικροσκοπική περιοχή. Ο πυρήνας είναι γίγαντας ενέργειας ακριβώς επειδή είναι νάνος μεγέθους...¨
¨ Το φάντασμα της όπερας¨, Στέφανος Τραχανάς, καθηγητής Φυσικού Τμήματος Παν. Κρήτης
Αφιέρωμα στην αρχή της απροσδιοριστίας ή αρχή της αβεβαιότητας του Heisenberg η οποία ανακαλύφθηκε το 1927 και ...κρύβεται πίσω από όλες τις βασικές φυσικές προυποθέσεις που επιτρέπουν στο σύμπαν να φτάσει έως την αυτογνωσία!

Τρίτη 18 Μαρτίου 2014

Από τον «Iron Man» στο… «Iron Plant»! Ερευνητές δημιούργησαν τα πρώτα βιονικά φυτά που υπόσχονται τεχνολογική επανάσταση

Οι ερευνητές έδωσαν στη δημοσιότητα μια εικόνα από τα πειράματα τους. Τοποθέτησαν στο εικονιζόμενο φυτό Arabidopsis thaliana νανοσωλήνες άνθρακα που λειτουργούν ως αισθητήρες και μελέτησαν τη συμπεριφορά του. Credit: (Bryce Vickmark)
Μασαχουσέτη 
Αμερικανοί ερευνητές δημιούργησαν τα πρώτα βιονικά φυτά, τα οποία, χάρη στην ενσωμάτωση νανοσωματιδίων και νανοσωλήνων στα κύτταρά τους, είναι ικανά να εκτελούν κατά πολύ βελτιωμένη φωτοσύνθεση. Πρόκειται για τα πρώτα βήματα σε ένα νέο πολλά υποσχόμενο επιστημονικό πεδίο, που έχει αποκληθεί «νανοβιονική των φυτών», αν και για τις πρακτικές εφαρμογές θα χρειαστούν αρκετά ακόμη χρόνια ερευνών. Το επίτευγμα, πέρα από το να κάνει «τούρμπο» την ενεργειακή αποδοτικότητα των φυτών κατά την μετατροπή της ηλιακής ακτινοβολίας, μπορεί επίσης να ανοίξει το δρόμο για μια νέα κατηγορία υβριδικών βιονικών υλικών (για χρήση σε κινητά τηλέφωνα, κτίρια κ.α.), που θα αναπτύσσονται και θα αποκαθιστούν μόνα τους τις όποιες βλάβες τους, μόνο με τη χρήση του ηλιακού φωτός...
Επιπλέον, κάποτε μπορεί τα ίδια τα δέντρα να λειτουργούν ως κεραίες κινητής τηλεφωνίας!
Οι χημικοί μηχανικοί και βιολόγοι με επικεφαλής τον Μάικλ Στράνο , καθηγητή χημικής μηχανικής του ΜΙΤ, που έκαναν τη σχετική δημοσίευση στο περιοδικό για νέα υλικά  κατάφεραν να αυξήσουν κατά τουλάχιστον 30% την ικανότητα των φυτών να απορροφούν ηλιακή ενέργεια, εισάγοντας νανοσωλήνες άνθρακα στους χλωροπλάστες, εκείνα τα μικρά όργανα μέσα στα φυτικά κύτταρα όπου λαμβάνει χώρα η φωτοσύνθεση. Επιπλέον, ενσωματώνοντας στα φυτά ένα διαφορετικό είδος νανοσωλήνων άνθρακα, τα τροποποίησαν έτσι ώστε να είναι σε θέση να ανιχνεύουν αέριους ρύπους, όπως το οξείδιο του αζώτου, που εκλύεται από τις εξατμίσεις.
Οι εφαρμογές
Φυτά με αποδοτικότερη φωτοσύνθεση θα είναι πιο χρήσιμα για την παραγωγή τροφίμων και βιοκαυσίμων, θα απελευθερώνουν περισσότερο οξυγόνο στον περιβάλλοντα ανοικτό ή κλειστό χώρο, ενώ θα έχουν νέες ιδιότητες, αφού θα μπορούν να δρουν σε πραγματικό χρόνο ως περιβαλλοντικά «ραντάρ» στον αέρα και στο έδαφος, ως βιοχημικοί ανιχνευτές επικίνδυνων χημικών αερίων (όπως το σαρίν) ή εκρηκτικών ουσιών όπως η τρινιτροτολουόλη (ΤΝΤ), καθώς και βιολογικών τοξινών (βακτηρίων, μυκήτων κ.α.).
Οι ερευνητές, ήδη εργάζονται για να ενσωματώσουν στα φυτά όχι μόνο νανοσωματίδια, αλλά ολόκληρες μικροσκοπικές ηλεκτρονικές συσκευές και νανο-υλικά όπως το γραφένιο.«Οι δυνατότητες είναι πραγματικά ατελείωτε. Το απώτερο όραμα είναι η χρήση των φυτών ως μια ευρεία τεχνολογική πλατφόρμας», υπσοτηρίζει ο Στράνο.
Η έμπνευση
Ο Αμερικανός ερευνητής ξεκίνησε την όλη έρευνα για τα νανοβιονικά φυτά εμπνεόμενος από μια προηγούμενη μελέτη του για τη δημιουργία αυτο-επιδιορθούμενων φωτοβολταϊκών κυττάρων που θα μιμούνται τα φυτικά κύτταρα. Το επόμενο βήμα ήταν η βελτίωση της φωτοσύνθεσης των χλωροπλαστών, ώστε η σχετική τεχνολογία να αξιοποιηθεί στα φωτοβολταϊκά, ώσπου τελικά προέκυψε η ιδέα να μεταφερθεί η νανοτεχνολογία της βελτίωσης στα ίδια τα φυτά, ώστε να γίνουν βιονικά.
Το υλικό που οι ερευνητές ενσωμάτωσαν στα φυτά, είναι νανοσωματίδια από οξείδιο του δημητρίου (ή νανοδημητρία), τα οποία είναι ισχυρά αντιοεξειδωτικά που προστατεύουν τους χλωροπλάστες από βλάβες λόγω της δράσης των ελεύθερων ριζών οξυγόνου, γεγονός που αυξάνει την ενεργειακή αποδοτικότητα των φυτών.
Κανονικά, τα φυτά αξιοποιούν περίπου μόνο το 10% του φωτός που απορροφούν, όμως οι ερευνητές πρόσθεσαν στους χλωροπλάστες και νανοσωλήνες άνθρακα ως ημιαγωγούς, πράγμα που επιτρέπει πλέον στα φυτά να συλλαμβάνουν την ηλιακή ακτινοβολία και σε άλλες συχνότητες, όπως την υπεριώδη και την εγγύς του υπερύθρου. Χάρη σε αυτούς τους πρόσθετους τεχνητούς «νανο-δέκτες» του ηλιακού φωτός, η φωτοσυνθετική δραστηριότητα αυξήθηκε έως 50% σε σχέση με αυτή που θα ήταν φυσιολογικά, αν δεν υπήρχαν οι ενσωματωμένοι νανοσωλήνες.
Ο συνδυασμός των δύο καινοτομιών, των νανοσωματιδίων από οξείδιο του μετάλλου δημητρίου και των ημιαγωγικών νανοσωλήνων άνθρακα, έκανε «τούρμπο» τους χλωροπλάστες, όσον αφορά την αποδοτικότητα της φωτοσύνθεσής τους. Τα πειράματα με φυτά έδειξαν ότι η βελτίωση φθάνει τουλάχιστον το 30%. Η έρευνα δημοσιεύεται στην επιθεώρηση «Nature Materials».
Τα ερωτηματικά
Προς το παρόν, παραμένει ακόμα άγνωστο πόσο και πώς η βελτιωμένη φωτοσύνθεση επηρεάζει την παραγωγή σακχάρων μέσα στο φυτό. Στη φωτοσύνθεση υπάρχουν δύο στάδια: στο πρώτο, η χλωροφύλλη των φυτών απορροφά ηλιακό φως, το οποίο διεγείρει τη ροή των ηλεκτρονίων στις μεμβράνες των χλωροπλαστών. Το φυτό αξιοποιεί αυτή την εσωτερική ηλεκτρική ενέργεια (μαζί με διοξείδιο του άνθρακα και νερό), για να υλοποιήσει το δεύτερο στάδιο της φωτοσύνθεσης, την παραγωγή σακχάρων όπως η γλυκόζη. Αυτά τα σάκχαρα μπορούν μετά να χρησιμοποιηθούν για την παραγωγή βιοκαυσίμων ή πολυμερών χημικών.
Μερικοί επιστήμονες, όπως ο Τζέημς Κόλινς του Πανεπιστημίου της Βοστώνης, δήλωσαν εντυπωσιασμένοι, κάνοντας λόγο για «ένα θαυμαστό συνδυασμό νανοτεχνολογίας και συνθετικής βιολογίας, που μπορεί να βελτιώσει τις λειτουργίες των έμβιων οργανισμών». Άλλοι όμως εμφανίστηκαν πιο επιφυλακτικοί, τονίζοντας ότι παραμένει ακόμη μυστήριο με ποιό τρόπο «δουλεύει» η νανοτεχνολογία μέσα στα φυτικά κύτταρα.
 www.tovima.gr